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PREFACE

This report is part of RAND's continuing interest in the
detection of high-altitude nuclear explosions. In particular, it
is concerned with the low-frequency hydromagnetic waves which are
generated by such explosions, and which are detected by ground-
current measurements at world-wide locations. In this report, we
direct our attention to the response of the ionosphere to such low-
frequency hydromagnetic disturbances. The purpose is to separate
the effects of the medium from those of the source on the trans-
mitted disturbance.
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SUMMARY

In this report, we study the propagation through the ionosphere
of sub-extremely-low frequencv {< 0.1 cps) hydromagnetic waves. We
conecider the case of pizne wave propagation in the vertical direc-
tion in the presence of a uniform magnetic field which is also in
the vertical direction (so-called polar propagation). The purpose
is to separate out the effects of the ionosphere on hydiomagnetic
disturbances propagating through it. The ionosphere is assumed to
extend infinitely far in the upward direction and to terminate
abruptly 80 km above a perfectly concducting flat earth. The charged
particle density is assumed to be constant throughout the ionosphere,
and the neutral particle density to vary exponentially with altitude.
The coupled hydrodynamic and electromagnetic equations for the
medium are linearized, and, with the approximations valid for low-
frequency waves, the resulting system is shown to reduce to a
second-order wave equation. A steady-state solution of this equa-
tion is obtained, from which transmission and reflection coefficients
are calculated. 1t is found that, for ionospheric conditions
corresponding to daytime at sunspot maximum, the transmission co-~
efficient exnibits a pronounced resonance at a frequency of about
0.015 cps. Since this is approximately the frequency of so-called
Pc oscillations, it is suggested that the resonance just described
accounts for these natural micropulsations in the geomagnetic field.
It is found that tlic -esonance shifts to higher frequencies at night,
also in agreement with the data on natural Pc oscillations. It is
shown that the presence of an almost perfectly conducting ground
(at these frequencies) is important in Jdetermining the location of
the resonance. Finally, it is shown that disturbances reaching the
ground, in the polar regions, should be very nearly left-circularly

polarized.
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1. INTRODUCIION

A subject which has been receiving considerable acttention for
a long time is the existence of sub-extremely-low frequency fluctua-
tions in the geomagnetic field. These fluctuations, which have
periods of the order of seconds to tens of seconds, are associated
with many naturally occurring geomagnetic phenomena, and have also
been generated by nuclear explosions at high altitude.

The experimental data on natural field fluctuations have been
summarized by Campbell (1963). Briefly, the data show regular
oscillations in the frequency range below about 0.2 cps appearing
over broad sections of the earth with related phase on days of high
solar-terrestrial activity. The oscillations appear quite sinu-
soidal, with a period which varies slightly with season and con-
siderably with the time of day; longer period oscillations are
observed near noon whereas shorter periods are noted at night.
Maple (1959), for example, found two daytime bands of oscillations
centered at 70 seconds and 20 seconds, respectively, and a nighttime
band with an average peri. f 8 seconds. The polarization of the
magnetic field is elliptical in the horizontal plane. The signal
amplitude shows a latitude dependence, dropping off toward lower
latitude by a factor of about % per 20° to 30° lower latitude.

In addition to the data on natural fluctuations, much data
exists on the fluctuations generated by various high-altitude
nuclear explosions. This data shows a striking similarity between
bomb-generated and natural fluctuations in two important respects.
In the first place, the initial phase of signals generated by such
explosions arrives essentially simultaneously at stations all over
the world (with time delays after detonation which depend on the
altitude of the explosion). Secondly, the signals generated by a
given explosion’ are essentially the same in shape and duration at
stations all over the world. In general, one may say that the
signals resulting from low-yield detonations, such as the Argus
series, are quite similar in most respects to naturally occurring

signals.
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One further point of interest is the power spectra associated
with oscillations in this frequency range. Several authors
(Santirrocco and Parker, 1963; Smith, Provazek and Bostick, 1961;
Campbell, 1959; and Horton and Hoffmann, 1962) have analyzed the
spectra associated with natural fluctuations, while Hodder (1963)
has presented a spectral analysis of signals resulting from nuclear
explosions as well as of the natural background. These analyses
show one or more large peaks in the frequency range of interest.

In particular, a large fraction of Hodder's spectra, both bomb-
induced and naturally occurring, show a very prominent peak at about
.02 cps.

The simultaneity of arrival of these fluctuations over broad
sections of the earth has led many authors to conclude that the
signals received at arisus stations arise from a common ionospheric
disturbance. The disturbance is generally believed to propagate
through the ionosphere as a hydromagnetic wave which, upon emergence
from the ionosphere, propagates as an electromagnetic signal to the
various points of detection. The time delay between detonation and
receipt cf explosion-generated signals would then represent the trans-
it time of the hydromagnetic disturbance through the ionosphere.
Estimates of these transit times are in reasonable agreement with the
observed delays.

The point which concerns us in this paper is the striking
similarity among signals in this frequency range resulting from a
variety of natural causes, and the similarity between these natural
signals and those which are produced by explosions. These similari-
ties have suggested to many authors the importance of the ionosphere
in the transmission of such disturbances. We would point out here
that the similarity between natural fluctuations, which are generated,
for the most part, outside the ionosphere, and explosion-produced
fluctuations, which are generated in the ionosphere itself, emphasizes
the particular importance of the lower ionosphere (below about 400 or
500 km) in determining the characteristics of the observed signals.

It is this region of the ionosphere to which we turn our atteation.




The low-frequency transmission characteristics of the lower
ionosphere have been investigated by Francis and Karplus (1960) and
by Eiglg (1963) . The former, making certain simplifying assumptions,
numerically integrated the differential equations for the propaga-
tion of hydromagnetic disturbances in the ionosphere, using empirical
ionospheric properties, chosen to correspond to the daytime at
sunspot maximum. Their numerical results show that the ionosphere
is essentially transparent for angular frequencies somewhat less
than 1 radian/sec. Field (1963) used empirical ionospheric proper-
ties to calculate an altitude-dependent complex index of refraction
for the ionosphere. He then approximated the ionosphere by two
layers, the upper of which has a real index of refraction and the
lower of which has a complex index of refraction, and calculated
the resulting transmission coefficient. Field's results are sub-
stantially in agreement with those of Francis and Karplus (1960).
Neither investigation, however, revealed any prominent resonances
in the transmission coefficient.

In this paper, we also calculate the transmission and reflec-
tion coefficients for the lower ionosphere. We use essentially the
same mode! as Francis and Karplus (1960) , but with some additional
simplifications which make possible an analytic, rather than a
numerical, sclution. The advantages of an analytic solution lie,
of course, in the physical insight it provides and in the ease with
which the effects of a variation in ionospheric parameters can be
determined. Even with the necessary simplifications, the important
features of the phenomenon appear in such a model.

We start by incorporating our simplifying assumptions into
the basic equations of motion for the ionospheric constituents.

From these basic equations we derive a wave equation, which we then
examine in the frequency region below about 1 cps for the case of
polar propagation. We show that, for the polar propagation of hydro-
magneric waves in this frequency range, the ionosphere consists
essentially of thre. '"regions": a lossless "Alfven region," above
about 350 km, in which the disturbance propagates as a pure Alfven

wave, a '"Hall region,'" below about 130 km, which is dominated by




ion-neutral particle collisions and in which the propagation
character .stics are quite different from the Alfven region, and

an intervening ''transition region' which smoothly connects the
Alfven and Hall regions. (We shall sometimes refer to the Alfven
region as the "uppcr ionosphere,' and to the transition and Hall
regions as the "lower ionosphere.'") We then assume that the Alfvén
speed is uniform throughout the entire (semi-infinite) ionosphere

and that the ion-neutral particle collision frejuency (which enterc
only in the transition region) varies exponentially with altitude.
Wita these assumptions, we are able, without the further introduction
of any artificial boundaries, to obtain an analytic solution of the
wave ejuation. The solution immediately yields the desired trans-
mission and reflection coefficients. The transmission coefficient

is found to exhibit a pronounced resonance at a frequency of .015

cps for daytime conditions, with an upward shift in frequency for
nighttime conditions. This resonance is in the frequency range cof
so-called Pc oscillations, which are therefore apparently accounted
for by the filtering action of the lower ionosphere. (This resonance
does not appear in the work of Francis and Karplus (1960) , whose
calculations extend only to a freguency of 1 rad/sec at the low 2nd,
nor in the work of Field (1963) who was concerned only with an
average transmission coefficient rather than in its detailed dependence
on frequency.)

It should be mentioned that our assumption of a constant Alfven
speed throughout a semi-infinite ionosphere treats the upper
ionosphere as a lossless, non-dispersive medium (or transmission
line). It is known, however, that the Alfven speed actually in-
creases with altitude in the region between about 200 km and 2000 km,
This should be of little consejuence for the initial phase of bomb-
induced signals which are generated at altitudes of a few liundred
kilometers, but may be expected to modify signals which are gencrated
at altitudes of 2000 km or more. The transmission properties of a
medium with varying Alfven speed have been investigated by several
authors. Jacobs and Watanabe (1762) have considered the case of a

collisionless upper ionosphere in which the Alfven speed increases




exponentially with altitude to a maximum at 2000 km. They approxi-
mated the medium by six uniform Alfven layers of equal thickness,
the lowest of which is grounded, and numerically calculated 2 trans-
mission coefficient. Field (1964) has obtained an analytic solution
to the same problem. These authors find that a filtering action
takes place between the regica of maximum velocity at around 2000 km
and th* bottom of the upper ionosphere. Various resonances appear,
the lowest of which occurs at a frequency cf about.l cps, or about
an order of magnitude higher than the frequency of the resonance
associated with the lower icnosphere. Prince and Bostick (1964)
have carried out numerical :alculations using a mire realistic
ionosphere, with various collisional effects taken into account.
They find similar resonances in the transmission coefficient. These
resonances in the transmission coefficient of the upper icnosphere
are thought to be responsible for 'pearl” type oscillations.

For disturbances originating at heights of 2000 km or more (and
in the frequency range belcow about 1 cps), the ionosphere below 2000
km therefore appears very much like two successive filters. The
upper filter has a transmission resonance at about .1 cps, und the
lower filter a transmission resonance at about .015 cps. The com-
bined transmission coefficient is essentially the product of the

sepsrate transmission coefficients.
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11, WAVE EQUATION IN THE IONOSPHERE

We start by making the same simplifying assumptions as Francis

and Karplus (1960), viz.,

(1) the static magnetic field i3 uniform,

(2) the pressure is so low that hydrostatic restoring forces
and gravitational forces are small compared to electro-
static restoring forces,

(3) the fractional ionization is so small that collisions
between electrons and ions may be neglected,

(4) the fractional ionization is sc small that collisions of
neutrals with charged particles may be neglected (i.e.,
the neutrals do not participate in the mass motion), and

(5) the ionosphere is still and flat, and the wave normal is
along the icnospheric density gradient.

In addition to these assumptions, we further assume that

(6) the static field is uniform and In the vertical direction,
which restricts the applicability of our model, In detail ac
least, to the polar and auroral regions. These basic assumptions
will now be incorporated into the ejuations of motion for the
ionospheric constituents.

We start with the following transport ejuations for the electrons

and (singly-charged) ions:

v, L Ve - Vexi

——-—.+ . —— = -

3t v, v Vo + = (E + - ) Ve Ve (1a)
ﬁi — —— e - ;i x E

—S-E--(—vi Vvi-;-(E-l» = )x-ui Vi, (1b)

where Vg and vy are the collision frequencies of electrons with
neutrals and ions with neutrals, respectively, and the other symbols
have their usual meanings. (We shall use cgs units throughout.) If

we take the positive z-direction to be vertically downward and




restrict our attention to plane transverse waves of small amplitude,

we may write

V= (v, vy, 0) (2a)
B= (b, b, B) (2b)
E = (E, E,, 0) (2¢)

where the v, b, and E are assumed to be small quantities. Linearizing

the transfer equations, we obtain

a;e - - e —
-—3-E+wevexe3+geve=--;:8 (3a)
é?—i'-w V. xe. +p, V. =5-E (3b)
e 37 Y% o,

wnere e, ie 2 unit vector in the positive z-direction, and w =
3 e,i o, C
?

is the cyclotron frequency of the particular ionospheric component.

with the assumption of a static field in the vertical direction, an
essentiali simplification of the equations results if we introduce

the complex variatles
v=v, -iv, (4a)

E"El-iﬁz. (4b)

In terms of these variables, Egs. (34) ard (3b) take the form

e

(Qe tiw)v, =-—E (5a)
e
@ -1w)v ==E (5b)

i
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wvhere ( is the operator

nag;h, (5)

for the component in question.

Remembering that the current density is defined as
J=nelv, -v) €))

where n is the number density of electrons and ions (assumed equal),

we may combine Egs. (5a) and {5b) to obtain

Ellr-‘

. .. T _ S
(Qe + une) (ﬂi - 1mi) j=e L : (Qe + une) * = ({1i iwi)J! E (8)

i e
where
jzjl’ijz‘ (9)

We note, in passing, that Eq. (8) provides a very simple
derivation of two of the diagonal comporents, 5 and 62, of the
conductivity tensor. The equation defining the conductivity tensor

reduces, in the present case, to
‘j’=013+92£x‘e'3 (10)

which may also be written

j = (o +1io0,) E. (1)
) . . -int

Assuming a time dependence of the form e an Eq. (8), and
comparing Eqs. (8) and (11), we obtain

: - iw v, - iw

2 v \
o, =ne { < 2 7. ¥ L 3 57 ¢ (12a)

my (v, -iw) " + & ] m, [(o; -iw) ™ + o]




, w w, .
c,=n e2 - = + L }, (12b)

2 2 2 2
. 4 U .
me[(ve iw)” + L, mi[(pi i)" + Li]

in agreement with the usual formulas for these conductivities.
Finally, to derive a wave ejuation for E, we combine Ej. (8)
with E3. (7) and

S -1 1
7 E e (13)
c
to obtain
. . 2 by n e JE
- iw) 7 = 0 == :

(ﬂe + IWQ)(Qi 1ui) 7" E 5 (meﬂe + miOi) At (14)

m m.cC

e i

where we have used mw, = mL.. The general wave ejuation is evi-

dently a complicated fourth-order equation and we shall not attempt
to discuss its general properties at this ¢time. We do note, how-
ever, that in the limit of very strong magnetic field and no
collisions, i.e., W, w - and Vgs V5 0, Eg. (14) reduces to

'
the usual ejuation for Alfven waves

V E = 3 (15)

(9%
r N
[ 4]

i
2

v
a

BZ
0

1,
4 n(mif me)

where v, = is the sjuare of the Alfven speed.
Fortunately, for the frejuency regime under consideration,

Ej. (14) simplifies considerably. Much of the simplification re-

sults from the properties of the ionosphere in the region of

interest (80 km - 500 km), viz.,

(a) ®, -106 rad/sec,
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(b) 102 < p, < 105 rad/sec,

(c) w, ~ 1()2 rad/sec,
i

(@ 1072 < v, < 10* rad/sec .

(S2e Francis and Karplus (1960) for a tabulation of ionospheric proper-
P e B sl . W SR

ties). 1In view of these relationships, and the fact that we are

interested in frejuencies w << Ly (i.e., aig << '.vi), the following

approximations become valid:

Q +iv ~iw (16a)
e e e
e e - dw 16b
Qi Ty vy Yy ( )
m, ¥
F : 2 (=
urthermore, since y, 2 (m.) Vg »
i
+m Q ~m (. 16c¢
m, Qe +my O it (16¢)

L
to terms of relative order (me/mi)z. With these approximations,

E3. (14) becomes

. 2 .. L ~ QE
(o, - 1u.\i) V°E iw, 2 Q, at ’ (17)
a

a somewhat more tractable second-order equation.




Before attempting a solution of Eq. (17), it is worth noting
that for hydromagnetic waves in the frejuency regime below about
1 cps, the ionosphere consists of three essentially distinct regions,
which are characterized by the relative magnitudes ot the tchree
frequencies Vi W and ¢ (the angular frejuency of the disturbance).
In order of increasing altitude, these regions are:

(a) Hall Region - This is defined to be the region in which
the inequality & << wy < vy is satisfied, i.e., where the collision
frequency is the dominant frejuency. 1t lies, therefore, between
about 80 km and 130 km. The boundaries of this region are inde-
pendent of w, provided that w << w, . Here, the Hall effect pre-
dominates; in terms of the conductivities defined by E3s. (lla) and

(11b), o, >0 In this region, Eg. (17) reduces to

1
o
2. _ . % E
VT E lvzat’ (18)
a

i.e., to a Schrgdinger-like equation. It is important to note that,
though this region is collision-d. minated, the wave equation never-
theless does not contain the collision freguency explicitly. The
implicit importance of collisions is, however, reflected in the form
of the eguation.

(b) Transition Region - This region is defined by the inejuality
w< v, <w. It lies between about 130 km and 353 km. The location
of the upper boundary of this region depends on the frequency w;
the value given is appropriate to a frequency @ ~ .3 rad/sec. Here
no further simplification of the wave equation is possible; collisions
thus play an explicit role in this region.

(c) Alfven Region - This is the region in which the inequality
vy < w <K< W is satisfied. It is therefore the region above about
350 km, and in our model is assumed to be semi-infinite in extent.

In this region, Ej. (17) reduces to Ej. (14), the usual equation
for Alfven waves. The wave equation, in this region, is independent

of the collision frequency.
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actual functional form of the collision frejuency enters only in
the transition region. To obtain an analytic solution to the wave
equation, we must, of course, approximate the ionospheric collision
frejuency by an analytic function. To obtain an analytic approxi-
mation which is valid over a large region of the iorosphere, and
which at the same time permits an analytic solution of the wave
equation, does not seem possible. We see, however, that this is
fortunately not necessary; we are presented ~ith the far simpler
task of constructing an expression which is a good approximation
only over a relatively limited portion of the ionosphere.

Finally, let us emphasize that we have been speaking of 'regions
in a qualitative rather than in a mathematical sense. In the model
which ve employ below, it will not be assumed that these regions
are separated by artificial sharp boundaries, with a separate wave
equation appropriate to each. The single wave equation, Ej. (17),
will govern the propagation of the disturbance throughout the entire
ionosphere. The essence of the above discussion is that the
character cf the wave equation changes (continuously, of course)
from one region to the next, and this property will obviously be

reflected in the solution to that equation.




-13-

In this section we shall construct the steady-state solution to
Eq. (17) for a model ionosphere which will be described below. If

we introduce a time dependence of the form e-iwt, Eq. (17) becomes

2 2
ik g‘ + % n2 (w;z) E=0 (19)
dz c
where
2w (1 - iw/v,)

c i i

n {w;z) = 5 = 7 - (20)
VZ w (1 iwi/ui)

a

In Eq. (19), E now denotes E(z,w), the Fourier transform of E(z,t).

Lot and the definition of

With = time dependence of the form e
E(z,t) by Eq. (4b), positive values of w correspond to left-circularly
polarized waves, which we shall call the L-mode, and negative values
of w correspond to right-circularly polarized waves, which we shall
call the R-mode. (In the case of polar propagation which we are
considering, these two modes are decoupled from each other.)

The more important properties of our three regions can already
be deduced from Eqs.(19) and (20). In the Alfven region, w/vg>> 1
and wilui >> 1, so that the index of refraction n(w;z) beccmes

n(w;z) - n_ = <. (21)

a v
a

This is the well-known result that, for both modes of propagation,
the Alfven region is a lossless and non-dispersive medium.
In the Hall region, w/ui << 1 and wi/u1 << 1, and the index

of refraction becomes

o %
n(wiz) - ng(o) = GO . (22)
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Thie medium thexafore appears Gu ferent to the two modes of

um th *re appéars guite di
propagation. For the L-mode (w > 0), the index of refraction is real,
and this mode therefore propagates through the Hall region without
attenuation, but obviously with dispersion. For the R-mode (w < 0),
the situation is quite different; the index is pure imaginary, and
this mode is consequently evanescent. Because of this, the trans-
mission coefficient for the R-mode drops off very rapidly with fre-
quency, and it is mainly the L-mode which gets through the ionosphere.
The disturbances reaching the ground should thus be circularly
polarized. (We must remembter, of course, that we are treating the
case of polar propagation; in the higher latitule, but non-polar,
regions, we would expect the same mechanism to produce eliptical
polarization, in agreement with observation.)

In the transition region, no similar simplification of the
index of refraction takes place. The index for both modes is complex,
so that in this regiom each mode undergoes both attenuation and
dispersion.

The quantities vis oy and v: in Eq. (19) are, of course, all
functions of the height z. The Alfven speed v, depends on the
density of ions, which varies with altitude (and time of day). How-
ever, as we have pointed out, we are concerned only with the trans-
mission properties of the lower ioncsphere (i.e., below about 350 km).
Over this region the ion density is relatively constant (except at
the very bettcm, where we will replace the very rapid actual varia-
tion with a discontinuity). We will assume that the Alfven speed is
constant throughout the whole ionosphere, with a value appropriate
to the lower ionosphere. As we have stated previously, this approxi-
mation should have little effect on the calculated properties of the
lower ionosphere. The same remarks apply to the ion cyclotroa fre-
quency w, which is also assumed to be constant.

It now remains to approximate the ion-neutral particle collision
frequency, v, - For reasons discussed above, it is sufficient to have
an analytic approximation which is accurate only over the transition
region. Over this region, the collision frejuency is approximated

rather well by an exponential; we therefore take vy to have the form
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v o ez/c ) (23)

We have taken the plane z = 0 to be at that altitude at which vy =W,
'

or in other words, at the '"boundary" between the Alfven and transi-

tion regions, which occurs at an altitude of about 130 km. (The

positive z-direction has been taken vertically downward, as before.)

For the time being, the collision frequency scale-height { will be

left as a parameter, with an appropriate numerical value to be

assigned later. This will enable us to examine the role played by

the transition region in determining the transmission coefficient.

It is convenient at this point to work with dimensionless quanti-
ties, which we shall denote by a tilde. To do so, we introduce the
following units:

unit of frequency = w,
v
unit of length = ;& .
i
In these units, the frequency range of interest is @ << 1. Intro-

ducing these units and combining Eqs. (19), (20), and (23),we obtain

‘-’?14- £(@; Z/O E=0 (24)
&2
where
~ o~ w - fﬁz e;;
£(@; 2/0) = & == (25)
1 - ie~2/C

The propagation problem actually extends down to the surface of
the earth, which we treat as a perfect conductor at the low frejuencies
of interest to us., At the base of the ionosphere, the variation in
composition is very rapid compared with the wavelength in its vicinity;
we therefore replace the actual variation in composition by a dis-
continuity at z = z;. With our choice of coordinate axes, the

atmosphere is therefore divided in the following way into two
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atmospheric regions (the upper of which we have already subdivided

into ionospheric regions);

z2 <z ionosphere

1’
(z = 0} ; altitude at which y, = w)
R discontinuous transition to neutral atmosphere

z,<z<z + h; neutral atmosphere

1
1 + h; eurface of the earth.

z =2
The quantity h is the height of the neutral atmosphere.

Since the earth is assumed to be a perfect conductor, the field
at the surface of the earth must vanish. In the neutral atmosphere,

the field must therefore have the foim

= o~ /\I-N -
E AO(ED sink_ {Z - 2] 1)) (26)

(21 <i<z + 1)

where Ao(ib is some unknown function of &. The boundary condition
we impose at the base of the ionosphere is that the field and its

derivative are continuous, or that

(32} (38 -resrel o
& - h

where the approximation of the cot follows from the fact that the
wavelength in air is extremely long.

We next turn cur attention to the solution of the wave equation
in the ionosphere. Prom Eq. (25) it is apparent thar for z,/T >> 1
{i.e., in the Hall region), £f(W; Z/{) ~ W. There must consejusntly
exist two linearly independent soluticns, W, and wz, cf Eq. (24)

such that

1

=
(&)
{
Ne
1
B

(28)
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We take our gereral solution of Eq. (24) to have the form
E = Ai(aﬁ(wl'+ oM ,) (29)

where Ai@ and y are two, as yet unknown, functions of W. Since the
asymptotic form given by Eq. (28) is a good approximation in the Hzll

region, we have

~h o~k
E '*‘"Ai@ (eu.. z . ve iw 2 (30)

Using Eq. (30) to evaluate the left-hand side of Eq. (27) and solving

for o, we obtain

~ 5 ~
20 ° 20 0 4w PR 61

= -e ~%’_’
(1 -iw *h)

which, substituted back into Eg. (30) gives, for the electric field
at the base of the ionosphere,

Ty

~ %
EGED =A@ 2 1w %ﬁ) e L (32)
(L -iw*h)

To obtain a transmission and reflection coefficient, we must
examine our solution, Eq. (30), in the Alfven region (Z/7 << - 1).
In the Alfven region, Eq. (25) becomes f(w; z/{) ~ 2; consequently,

any solution of Eq. {24) tecomes some linear combination, in the

~ o~

Alfven region, of the two lincarly independent solutions e’ % and
e % we may therefore write
Wl - a, et 2y bl e-iw z
(33)

g 2y e 4b2e G-~ - .
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Combining Eqs. (33) and (29), we obtain for the field in the Alfven

region
E ;;,Ai(&i) (al +m2)(em Z4pe iV %
(34)
G-
where
b, + lez
r & —t——— (35)
a1 + araz

We shall refer tc lr| as the amplitude reflection ccefficient; the
square of this coefficient is the usual energy reflection coefficient.
From Eqs. (30) and (34), we can calculate the ratio of the

electric field at the base of the ionosphere to the incoming-wave
part of the electric field in the Alfven region. This quantity,
which we call the awplitude transmissicn coefficient for the electric
field, and which we denote by tg, is given by

~ %~
EE,0 25 te 1 36
Ai(&)(alﬁaz) (1-iw ¥ 'ﬁ)(a1+ aez) .

“E

In practice, we are interested in the magnetic field at the
surface of the earth which, at these extremely iarge wavelengths in
aix, is essentially the same as the magnetic field at the base of
the ionosphere. Combining the induction equation with Eq. (27), we
obtain

BGW =2 { B _-- 5@, &)

vhere B = Bx -1 By. On the other hand, the induction equation
applied to Eq. (34) gives




B a;fzhi(ﬁb(al +062)(exw Z_re™¥ z).
@~ - )

so that, in analogy with Eq. (36), the amplitude transmission co-
efficient for the magnetic field, which we denote by tgs is given

by
v iy

B(Z ,®) 1
1 2e (38)

t, = -

BV @ (gt 0a)) T (1-13 ? B)(agtoa,)

It remains now only to determine the Juantities @15 39s bl’
and bz. These are obtained by determining the solutions, wl and
W,, of Eq. (24) which have the form prescribed by Eq. (28) and
examining them in the limit Z - - =, where they must assume the
form given by Eq. (33). In order to avoid introducing any un-
necessar, mathematical detail at this point, we shall defer this

procedure to the Appendix and merely present the results in the

next section.
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The numerical results presented in this section will be based
on the following values of the relevant parameters, chosen to coin-
cide with the ionosphere of Francis and Karplus (1960):

S A A~ A
h = 80 km
z, = 50 km

1
w, (unit of frejuency) = 175 rad/sec

Va 1
;r'(unit of length) = ==

1

i~

km

-4
Nt

i
Ni = jon density in (no./cc) x 10-6.

We recall that the cyclotron frejuency o, is considered constant
throughout the ionosphere; the numerical value chosen for Wy is
that freguency at which v, T W in the actual ionosphere, which, by
Eq. (23), also defines the plane z = 0. The numeric in the unit of
length is based on an ion atomic weight of 26, which is also appro-
priate to the region around z = 0, i.e., around 130 km.

To obtain the transmission and reflection coefficients, we must

introduce the expressions obtained in the Appendix for a;, a,, bl’

and b2 into Egs. {38) and (35). The results are most coanveniently

expressed in terms of a functiou g(w %,GD defined by

3} - G ~%
s i - =28 G H) e T 30T 2
(TQ-17% - 7 &)

where, as usuval, [ denotes the Gamma-function. Combining the results
of the Appendix with Eqs. {35) and {38), respectively, we obtain

N W AR R R W & ) 0)
L+TH @ LD + (-3 D g5 5,9)

T
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4
ty = e " 3 " . (41)

T(L - 2T DL+ %) gl *,w) + (1 - °) g(-w *,0)]

(As far as the functional form of g is concerned, W ¥ and @ are
treated as independent.)

Before obtaining numerical results for r and tgs it will be
instructive to examine the limiting case T = 0. As can be seen
from Eg. °23), this case corresponds to a collision frejuency

v = 0 z <0
(42)
v, = z>0,

and therefore to a medium consisting of two uniform layers, an

Alfven region and a Hall regior, (in which, despite the infinite
collision frequency, it is still assumed that the neutral particles
do not participate in the mass motion), separated by a sharp boundary
at z = 0. (This limiting case can, of course, be obtained much

more simply by direct calculation.) With ¥ = 0, all of the Gamma-
functions in the above expressions are unity, and considerable
simplification results. It is not difficult to show, for example,
that

|r] =1 (43)

for both the L-mode and the R-mode, although the physical signifi-
cance of this result is quite different for the two modes. For

the L-mode, this is an expression of the fact that both regions are
ilossless (real index of refraction in both regioms), and the
perfectly conducting earth reflects all of tte incident energy. On
the other hand, the R-mode, as we have pointed out previously, has

a pure imaginary index of refraction in the Hall region, and is con-

sequently evanescent in this region, This, coupled with the boundary

ey 4}’5%};39(%%
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condition which we have imposed at the surface of the earih makes

1 T

this evanescent region look infinite to the incoming wave (although
with an index of refraction somewhat different from that of the
actual Hall region), and consejuently leads to total reflection.

The transmission coefficient, in this limiting case, is given
by

[(1+’55)(1-1‘65’"ﬁ) e !
(44)

This coefficient will exhibit resonances at frequencies for which
the denominator of E3. (44) becomes small. It is a well-known
result that the nature of such resonances is intimateiy related to
the location in the complex W-plane of the poles of the trans-
mission coefficient. If a pole lies close to the real W-axis
(an we shall show shortly that this is indeed the case for the
poles of Eq. (44) in the frequency range of interest) it represents
a resonance, the real part of the pole giving the position of the
resonance and the imaginary part giving its width.

Now, the poles of Eq. (44) are the roots of the equation

~~% ~

-1z, iz, @

¥
1

5 +(1-‘5%)(1+1’(§¥‘ﬁ)e =0,

(1+?6”)(1-?n' ‘®) e

(45)

%

We are interested in the frejuency range @ ° << 1, where Eq. (45)

becomes, approximately,

coc(‘sl‘?l)-%”w-o. (46)

It is not difficult to show that the roots, E&, of this approximate

equation are pure real and, consejuently, that the low-frequency
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8

poies of Eq. {44) lie very ciose to the real w-axis, as wae stated
above. These poles thus represent very sharp resonances, as can be

seen in Fig. 1 where |t for the L-mode, is plotted against W for

sl
1" 50 km and h = 80 km), for ion densities
of 5 x 105/cc, 105/cc, and 5 x 103/cc. The three values chosen for

the ion density are representative, in order of increasing density,

the case { = 0 (with z

of conditions in the daytime at sunspot maximum, in the daytime at
surspot minimum, and in the nighttime, respectively.

A simple physical interpretation of these resonances exists in
the limiting case where we ground the jonosphere at its base, i.e.,

for the case h = 0, In this case, the roots of Eq. (46) are given by

~%~’£11~’ - E
w ©z o= x, z, (2n-1) 5
n
n=1, 2, ... %7

where I; is the wavelength in the Hall region. The lowest root
therefore corresponds to the frequency at which the Hall region is

a quarter-wave plate. However, it should be noted that, since the
term W % R in Eq. (46) is of order unity even for the lowest of these
roots, the inclusion of a neutral atmosphere between the base of the
ionosphere and ground plays a very important role in determining the
positions of the resonant frequencies. For example, for the case

of an ion density of 5 x IOS/cc, the lowest frejuency determined by
Eq. (47) is 3% =3 x 12;3, whereas ‘be lowest root of Egq. (46) is
actually at W = 6 x 10 ', a factor of 5 lower. Thus, the resonances
are shifted toward significantly lower frequencies by the inclusion
of a region of neutral atmosphere. This emphasizes the importance
of including such a region in any calculation of ionospheric trans-
mission coefficients.

Before leaving this two-laye: limit, we note from Fig. 1 that
the transmissior resonances show an upward shift in frequency from
day to night, and from sunspot maximum to sunspot minimum, as is ob-
served for Pc oscillations. This result persists even when a transi-

tion region is introduced. This is beat understood by rewriting Ej.
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(46) 1n terms of the dimensional lengths z; and h, recalling that
the unit of length is va/wi = ciui'%, where c; is a constant which
depends only on the ion mass. In terms of these quantities, Ej.

(46) becomes

cot (W ¥ Ni% cizl) -w ¥ Ni¥ c, h=0. (48)

It is clear that the roots of this equation can be written

E)'%N%--d (49)

where the dn are constants independent of ionospheric conditions.

We thus find that each rescnant frejuency varies inversely with ion
density. This result holds strictly in the two-layer limit only for
iBi¢< 1, since Eq. (46) was derived from Eq. (45) on the basis of
that assumption. With the same limitation on W, this same result
can be shown to apply in the general case to the roots of Eq. (41),
as well.

The two-layer limit considered above has two major inadejuacies:
it introduces an artificial sharp boundary between the Alfven and
Hall regions, which may give rise to spurious resonances, and it
fails to include the effects of collisional losses, the very region
in which such losses occur having been eliminated in this limit.

To include a tramsition region, we must calculate the transmission
and reflection coefficients for an appropriate value of the scale
height, . There seems to be considerable disagreement, however,

as to what the appropriate ionospheric scale height is. From the
ionosphere of Francis and Karplus (1960), for example, a scale
height of 14 km would appear appropriate, whereas the ionosphere of
Prince and Bostick (1964) puts the scale height closer to 10 km.
Because of this uncertainty in the best value of {, we shall present
the results for both { = 10 km and { = 14 km. This will, at the
same time, enable us to study the role of the tramsition region in

the determination of the transmission and reflection ccefficients.
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In Figs. 2 and 3, we have plotted !tB!‘ for the L-mode, for
scile heights of { = 10 km and { = 14 km, respectively, for different
values of the ion density. (The Gamma-functions of complex argument
were calculated on an IBM 7044 electronic computer.) A comparison
of these figures with Fig. 1 for the layered medium shows that the
most striking effect of the inclusion of a transition region is the
virtual elimination of all but the lowest resonance, which is in turn
considerably depressed and broadened compared to the layered case.
Thic qualitative change in transmission characteristics resulis
primarily from thne removal of the artificial sharp boundary of the
two-layer limit. The lowest resonance still remains, because at
this frequency the wavelength is many time the scale height of the
transition region, so that the transition from Alfven to Hall region
appears relatively sharp. At the higher frequencies, however, the
wavelength is comparable with or smaller than the scale height, so
that one region appears to change slowly and continuously into the
other.

The effects of losses in the transition region are contained
mainly in the reflection coefficient, since, with our model of a
perfeccly reflecting earth, all the energy which is not retlected is
absorbed. 1In Figs. 4 and 5, we have plotted |r|, for the L-mode,
for three different densities. (We recall that |r|2 is the energy
reflection coefficient.) A comparison of these figures with Figs.

2 and 3 shows that absorption becomes important, for a given ion
density, at frequencies somewhat higher than the corresponding lowest
resonance. It is also apparent that the reflection coefficient ex-
hibits characteristic minima in the neighborhood of the maxima of the
corresponding transmission coefficient. These minima, which rzpresent
absorption maxima, become more pronounced at higher frequencies.

A comparison of Figs. 2 and 3 with Fig. 1 shows that the intro-
duction of 2 transition region saifts the resonances, but not drasti-
cally, to somewhat lower frequencies. These resonances are thus
essentially still those frequencies at which the Hall region becomes
transparent. The downward shift producad by the inclusion of a transi-
tion region results from the fact that such a region increases the

effective size cf the Hall region.
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Based on a value of w, = 175 rad/sec, the lowest resonances
occur at a frejuency of .014 cps for { = 10 km and at a frejuency
of .013 cps for { = 14 km. The agreement with the 70 second period
observed by Maple (1959) is undoubtedly fortuitous, but the general
location of these resonances makes it seem very probable that they
are responsible for Pc oscillations. Another point in support of
this suggestion is the fact that these resonances, besides being
shifted to higher frequencies from day to night, are also considerably
depressed at night. This would account for the fact that Pc oscilla-
tions are mainly a daytime phenomenon.

One further point worthy of note in connection with ¥Figs. 2 and
3 is that the ionosphere becomes essentially transparer t night
up to freguencies of the order of 1 cps. On the other «d, in the
daytime thz transmission coefficient becomes rather small for fre-
quencies greater than about .05 cps. This would account for the
fact that 'pearl" type oscillations, which have frequencies of the
order of .1 cps, are mostly a nighttime phenomenon. In the daytime,
they are apparently filtered out by the Hall region.

In FPigs. 6, 7, and 8, we have plotted !tB' for the R-mode, i.e.,
for w < 0. It is apparent that the transmission coefficient for this
mode drops off very rapidly with frejuency compared to that for the
L-mode. At resonance, the trensmitted wave is almost entirely of
the L-type, and consequently left-circularly polarized, as mentiocned
previously.

In Pigs. 9 and 10, we have plotted |r| for the R-mode, again
for three different fon densities. It can be seen that, for low
frequencies, this mode is almost totally reflected, indicating that
it is nearly evanescent at these low frequencies. For frequencies
higher than about 1 cps, however, significant absorption bhegins to
take place, especially at the higher ion densities.

Finally, we should mention that we have considered only the
steady-state problem. The transmitted signal resulting from a

given source, however, is determined not only by the transmission




coefficient, but algo by the frequency spectrum of the source. For
a given source spectrum, however, the resulting signal can be calcula-
ted from the transmission coefficient given by Eq. (40). This in-
volves a Fourier integral over frequency of the transmission co-
efficient weighted with the source spectrum. The usual technique

for evaluating such integrals is to transform them to contour inte-
grals in the complex <W-plane. The integral then becomes the sum of
the residues of the integrand at the poles of the transmission co-
efficient. A procedure for determining the poles of Eq. (40) in the
complex «w-pl.une has been presented elsewhere (g&;‘% gg‘i
Greifinger, 1964). At this point we would only remark that any
transmitted signal becomes the sum of a number of resonance-like
terms, with coefficients depending on the source spectrum. The

higher frequencies are damped out more rapidly than the lower ones,

so that eventually the signal is almost purely sinusoidal, its
frequency being given by the real part of the appropriate pole of

the transmission coefficient. This is very nearly the value of

W at which the transmission coefficient has its maximum on the rea}

w-axis, i.e., at the resonant frequency calculated above.
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Fig. 1 - Amplitude of transmitted magnetic field, for unit amplitude

of incident magnetic field, as a function of frequency, for
different ionospheric conditions. (Ni is the ion number

density in units of 10%/cc and w; is the ion cyclotron
frequency)
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Fig. 2 - Am litude of transmitted magnetic field, for unit ampli-
tuce of incident magnetic field, as a function of
frejuency, for different ionospheric conditions. (Nj
is :be ion numbe:r density in uaits of 106/cc and wy is
the ion cyclotron frequency.)

B O




RGN w

- np——————

~30 -
4x10° —_
‘ N;=0.005
=
/ /
10°
- 0.1
-
|te] |
=14 km
(L-Mode) 0.5
10™" \
_ \
b
‘0’2 i L 1 iiLl i L 1 i Jiil 1 Jd. . LLill 1 i 1 1L
1073 167" 073 1072
w/w;
Fig. 3 - Ampiitude of transmitted mignetic field, for unit
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w; is the ion cyclotron frequency.)
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Fig. 4 - Amplitude of reflected magnetic (or electric) field, for
unit amplitude of incident magnetic (or electric) field,
as a function of frequency, for different ionospheric 6
conditions. (N; is the ion number deusity in units of 10 /cc
and w; is the ion cyclotron frequency )
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Fig. 5 - Amplitude of reflected magnetic (or electric) field, for
unit amplitude of incident magnetic (or electric) field,
as a fuaction of frequency, for different ionospheric
(N; is the ion number density in units of

6 . . .

10°/cc and w; 1is the ion cyclotron frequency.)

conditions.
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amplitude of incident magnetic field, as a function
of frequency, for different ionospheric conditions.
(N; is the ion number density in units of 10°/cc and
w, is the ion cyclotron frequency.)
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Fig. 9 - Amplitude of reflected magnetic (or electric) field, for
unit amplitude of incident magnetic (or electric) field,
as a function of frequency, for different ionospheric
conditions. (Nj is the ion number density in units of
106/cc and w; is the ion cyclotron frequency.)
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Fig. 10 - Amplitude of reflected magnetic (or electric) field,

for unit amplitude of incident magnetic (or electric)
field, as a function of frequency, for different
ionospheric cogditions. (N1 is the ion number density

in units of 10°/cc and w, 1is the ion cyclotron frequency.)




APPENDTY

In order to solve Eq. (24), we make the following change of

variable:

=1-1i e-z/: =1+ e.i"/2 e-z/: . (AD)
In terms of this variable, Eq. (24) becomes

> 22
—I—— TE=o. (A2)

;;§~ @-1)du L u(u 1) u(u 1)

This is to be compared with the canonical form of the hypergeometric

ejuation
oy LBHB-1SdF Ty 88 Ll _p.
2 L e Jaw L e nT @)D :
(a3)
These equations become identical if we set
a=-a' =ifw
B=-8' =i7W?* (A%)

Y’O,y"l.

We are looking for solutions of Eq. (A2) which have the form
prescribed by Eq. (28), viz.,

~ b
W. = eiw z
W = e-bo z
2

In terms of the vari2ble u defined by Eq. (Al), these solutions

must have the form




~40a

“ ~‘i 7"*‘2’

W - e T (u-l)_i‘ ®
- 1). (A6)
-k ~ (u
W, e2TT T (it

The solutions of Eq. (A2) which have the form required by Eq. (A6)

are
Lyy S
Wyo=e (u-1)te @ F(-iT o+ 17w, - iZG% - 3T @
1- 2% % - (u-1))
(A7)
- a;% ~ %
wyme P70 T p ey w T Y-
1+ 2% %5 - (u-1),

where F {s the usual hypergeometric function.

We now need to evaluate “1 and Hz in the limit z -« - o, which,
‘rom Eq. (Al), is the limit u - ». To dc this, we make use of the
analytic continuation which relates the hypergeometric function of

argument x and the hypergeometric function of argument x-l, viz.,

:;Z(E)!b). F(a’b;c ;!) = 2%2‘:5-)——%‘—&)- (_x)‘a F(a, l-c + a; 1-b + a; x_l)

b) [(a-b -b -1
+ r'%-‘)(gﬁ)' (-x) " B(b, l-ctb; l-atb; x )

| arg (-x)| <, (A8)

where T is the usual [-function. We apply Eq. (A8) to Eq. (A7) and
take the limit u - =, where the hypergeometric functions may te
replaced by urity. 1t is then easy to show that Eq. (A7) becomes

1wz -iw Z

19z -i%z @~ (49)




on the right-hand side of Eq. (A7), while the outgoing wave, e-iw z

arises entirely from the second term. The ccefficients in Eq.

(A9) are given by

~ & Do
a ,egtw. I‘(l-zit’m”) '(-2i7 ©) e 50D

1 DT T - 7D FQ-TT * - 1T D

-%Z*% ﬂl+ﬁf$§rpuf® -%tm

a, =e y popow Sa — — .

i fite ~AD TG +HTTT - T (410)

~k Do

b, = :zll'w T2 T %) [T ) e 2 [T

1

T(-iT ® %, i @) T(1-iTw " it W) .

~oH
~
&

-
boee 2tu LT+ 2T 5 e ® e
TGPT I+ 7D LA+ T % i D

To obtain Eqs. (40) and (41), we substitute Eq. (Al0) into
Eqs. (36) and (38), respectively, ard make use of the recursion
formula ['(z+1) = z ['(z).




REFEKENCES

Campbell, W. H., "Studies of Magnetic Field Micropulsations wi‘h
Periods of 5 to 30 Seccnds," J.Geophys.Res., 64, 1819-1826, 1959.
NN A AN

Campbell, W. H., '"Natural Electromagnetic Field Fluctuations in the
3.0-to 0.02-cps Range," Proc. IEEE, 51, 1337-1342, 1963.
NS A N A

Field, E.C., "Hvdromagnetic Signals in the Ionosphere,' The RAND
Corporation, 35:3830-PR, September 1963.

Field, E.C., private communication, 1964.

Francis, W. E., and R. Karpius, "Hydrcmegnetic Waves in the Ionosphere,"
J. _Geophys. Res., 63, 3593-3600, 1960.

Greifinger, C., and ?. Greifinger, "Low-frejuency Hydromagnetic Waves
in the Ionosphere,'" The RAND Corporation, RM-4225, October 1964.

Hodder, D. T., R. A. Fowler, B. J. Kotick, and R. D. Elliott, "A

Study of High Altitude Nuclear Blast Data,' North American Aviation,
Inc., SID 63-656, August 30, 1963.
PN I N N At g

Horton, C. W., and A. A, J. Hoffmann, '"Magnetotelluric Fields in the

Frejuency Range 0.03 to 7 cycles per Kilosecond, 1, Power Spectra,"”
J. Res. NBS, 66D, 487-494, 1952.
A e o~

Jacobs, J. A., and T. Watanabe, '"Propagation of Hydromagnetic Waves
in the Lower Exosphere and the Origin of Short Period Geomagnetic

Micropulsations, {cAésggi;\ZEgggﬁt. Phys., 24, 413-434, 1962.

Maple, E., '"Geomagnetic Oscillations at Middie Latitudes," J.
Geophys. Res., 63, 1395-1404, 1959.

~

Prince, C. E., Jr., and F. X, Bostick, Jr., "Jonospheric Transmission
of Transversely Propagated Plane Waves at Micropulsation Fre-

qu:ncies and Theoretical Power Spectrums,” J. Geophys. Res., 69,
3213-3234, 1964,

Santirrocco, K. A., and D. G. Parker, "The Polarization and Power
Spectrums of Pc Micropulsations in Bermuda,' J. Geoghzs. Res.,
68, 5545-5558, 1963.

Smith, H. W., L. D. Provazek, and F. X. Bostick, Jr., '"Directional
Properties and Phase Relations of the Magnetotelluric Fields at

Austin, Texas," J. Geophys. Res., 66, 879-888, 1961.

e g

B L A R AL LI

R Tr] WQMW«& b




